Many have argued the fact that plants are aware, and many seem to have the idea that plants have no awareness at all, and are next to being merely objects. I have compiled a list of facts that have been collected through scientific experimentation. This is some pretty ammazing stuff for most people, stuff that seems to shock most people. I however have known these things intuitively for a long time. it was funny because i said mostly all of these things on another forum and was attacked saying that i could offer no proof, yet when i looked for the proof there it was. tada!
Can plants actually have feelings? This was the conclusion of Cleve Backster back in the 1960s. He’s the former CIA interrogation specialist that connected polygraph sensors to plants and discovered that they reacted to harm (i.e. cutting their leaves) and even to harmful thoughts of humans in proximity to them.
Backster decided on impulse to attach his polygraph electrodes to the now-famous dracaena in his office, then water the plant and see if the leaves responded. Finding that the plant indeed reacted to this event, he decided to see what would happen if he threatened it, and formed in his mind the idea of lighting a match to the leaf where the electrodes were attached.
And that was when something happened that forever changed Baxter’s life and ours. For the plant didn’t wait for him to light the match. It reacted to his thoughts!
Through further research, Baxter found that it was his intent, and not merely the thought itself, that brought about this reaction.
He also discovered that plants were aware of each other, mourned the death of anything (even the bacteria killed when boiling water is poured down the drain), strongly disliked people who killed plants carelessly or even during scientific research, and fondly remembered and extended their energy out to the people who had grown and tended them, even when their “friends” were far away in both time and space.
In fact, he found, plants can react “in the moment” to events taking place thousands of miles away. And not only are they psychic, they also are prophetic, anticipating negative and positive events, including weather.
One of the most important things that Backster discovered was that, instead of going ballistic, plants that find themselves in the presence of overwhelming danger simply become catatonic! This phenomenon has posed endless problems for those researchers who, unlike Backster, do not respect the sentience of their subjects. Under such circumstances, the plants they are studying evince no reaction whatsoever. They simply “check out.”
“Yes, plants have both short- and long-term electrical signalling, and they use some neurotransmitter-like chemicals as chemical signals,” Lincoln Taiz, an emeritus professor of plant physiology at U.C. Santa Cruz -2013
A highly developed sensory apparatus is required to locate food and identify threats. Plants have evolved between fifteen and twenty distinct senses, including analogues of our five: smell and taste (they sense and respond to chemicals in the air or on their bodies); sight (they react differently to various wavelengths of light as well as to shadow); touch (a vine or a root “knows” when it encounters a solid object); and, it has been discovered, sound. In a recent experiment, Heidi Appel, a chemical ecologist at the University of Missouri, found that, when she played a recording of a caterpillar chomping a leaf for a plant that hadn’t been touched, the sound primed the plant’s genetic machinery to produce defense chemicals. Another experiment, done in Mancuso’s lab and not yet published, found that plant roots would seek out a buried pipe through which water was flowing even if the exterior of the pipe was dry, which suggested that plants somehow “hear” the sound of flowing water.
Scientists have since found that the tips of plant roots, in addition to sensing gravity, moisture, light, pressure, and hardness, can also sense volume, nitrogen, phosphorus, salt, various toxins, microbes, and chemical signals from neighboring plants. Roots about to encounter an impenetrable obstacle or a toxic substance change course before they make contact with it. Roots can tell whether nearby roots are self or other and, if other, kin or stranger. Normally, plants compete for root space with strangers, but, when researchers put four closely related Great Lakes sea-rocket plants (Cakile edentula) in the same pot, the plants restrained their usual competitive behaviors and shared resources.
Somehow, a plant gathers and integrates all this information about its environment, and then “decides”—some scientists deploy the quotation marks, indicating metaphor at work; others drop them—in precisely what direction to deploy its roots or its leaves. Once the definition of “behavior” expands to include such things as a shift in the trajectory of a root, a reallocation of resources, or the emission of a powerful chemical, plants begin to look like much more active agents, responding to environmental cues in ways more subtle or adaptive than the word “instinct” would suggest. “Plants perceive competitors and grow away from them,” Rick Karban, a plant ecologist at U.C. Davis, explained, when I asked him for an example of plant decision-making. “They are more leery of actual vegetation than they are of inanimate objects, and they respond to potential competitors before actually being shaded by them.” These are sophisticated behaviors, but, like most plant behaviors, to an animal they’re either invisible or really, really slow.
One of the most productive areas of plant research in recent years has been plant signalling. Since the early nineteen-eighties, it has been known that when a plant’s leaves are infected or chewed by insects they emit volatile chemicals that signal other leaves to mount a defense. Sometimes this warning signal contains information about the identity of the insect, gleaned from the taste of its saliva. Depending on the plant and the attacker, the defense might involve altering the leaf’s flavor or texture, or producing toxins or other compounds that render the plant’s flesh less digestible to herbivores. When antelopes browse acacia trees, the leaves produce tannins that make them unappetizing and difficult to digest. When food is scarce and acacias are overbrowsed, it has been reported, the trees produce sufficient amounts of toxin to kill the animals.
Perhaps the cleverest instance of plant signalling involves two insect species, the first in the role of pest and the second as its exterminator. Several species, including corn and lima beans, emit a chemical distress call when attacked by caterpillars. Parasitic wasps some distance away lock in on that scent, follow it to the afflicted plant, and proceed to slowly destroy the caterpillars. Scientists call these insects “plant bodyguards.”
The most controversial presentation was “Animal-Like Learning in Mimosa Pudica,” an unpublished paper by Monica Gagliano, a thirty-seven-year-old animal ecologist at the University of Western Australia who was working in Mancuso’s lab in Florence. Gagliano, who is tall, with long brown hair parted in the middle, based her experiment on a set of protocols commonly used to test learning in animals. She focussed on an elementary type of learning called “habituation,” in which an experimental subject is taught to ignore an irrelevant stimulus. “Habituation enables an organism to focus on the important information, while filtering out the rubbish,” Gagliano explained to the audience of plant scientists. How long does it take the animal to recognize that a stimulus is “rubbish,” and then how long will it remember what it has learned? Gagliano’s experimental question was bracing: Could the same thing be done with a plant?
Mimosa pudica, also called the “sensitive plant,” is that rare plant species with a behavior so speedy and visible that animals can observe it; the Venus flytrap is another. When the fernlike leaves of the mimosa are touched, they instantly fold up, presumably to frighten insects. The mimosa also collapses its leaves when the plant is dropped or jostled. Gagliano potted fifty-six mimosa plants and rigged a system to drop them from a height of fifteen centimetres every five seconds. Each “training session” involved sixty drops. She reported that some of the mimosas started to reopen their leaves after just four, five, or six drops, as if they had concluded that the stimulus could be safely ignored. “By the end, they were completely open,” Gagliano said to the audience. “They couldn’t care less anymore.”
Was it just fatigue? Apparently not: when the plants were shaken, they again closed up. “ ‘Oh, this is something new,’ ” Gagliano said, imagining these events from the plants’ point of view. “You see, you want to be attuned to something new coming in. Then we went back to the drops, and they didn’t respond.” Gagliano reported that she retested her plants after a week and found that they continued to disregard the drop stimulus, indicating that they “remembered” what they had learned. Even after twenty-eight days, the lesson had not been forgotten. She reminded her colleagues that, in similar experiments with bees, the insects forgot what they had learned after just forty-eight hours. Gagliano concluded by suggesting that “brains and neurons are a sophisticated solution but not a necessary requirement for learning,” and that there is “some unifying mechanism across living systems that can process information and learn.”
She noted that some of her plants learned faster than others, evidence that “this is not an innate or programmed response.”
“Here, I’ll show you something,” he said. “Then you tell me if plants have intention.” He swivelled his computer monitor around and clicked open a video.
Time-lapse photography is perhaps the best tool we have to bridge the chasm between the time scale at which plants live and our own. This example was of a young bean plant, shot in the lab over two days, one frame every ten minutes. A metal pole on a dolly stands a couple of feet away. The bean plant is “looking” for something to climb. Each spring, I witness the same process in my garden, in real time. I always assumed that the bean plants simply grow this way or that, until they eventually bump into something suitable to climb. But Mancuso’s video seems to show that this bean plant “knows” exactly where the metal pole is long before it makes contact with it. Mancuso speculates that the plant could be employing a form of echolocation. There is some evidence that plants make low clicking sounds as their cells elongate; it’s possible that they can sense the reflection of those sound waves bouncing off the metal pole.
The bean plant wastes no time or energy “looking”—that is, growing—anywhere but in the direction of the pole. And it is striving (there is no other word for it) to get there: reaching, stretching, throwing itself over and over like a [url=http://www.amazon.ca/s?url=search-alias%3Daps&field-keywords=fly rod]fly rod[/url], extending itself a few more inches with every cast, as it attempts to wrap its curling tip around the pole. As soon as contact is made, the plant appears to relax; its clenched leaves begin to flutter mildly. All this may be nothing more than an illusion of time-lapse photography. Yet to watch the video is to feel, momentarily, like one of the aliens in Mancuso’s formative science-fiction story, shown a window onto a dimension of time in which these formerly inert beings come astonishingly to life, seemingly conscious individuals with intentions.
``if we define the term consiousness simply as the state of being awake and aware of one’s environment—“online,” as the neuroscientists say—then plants may qualify as conscious beings, at least according to Mancuso and Baluška. “The bean knows exactly what is in the environment around it,” Mancuso said. “We don’t know how. But this is one of the features of consciousness: You know your position in the world. ``
In support of their contention that plants are conscious of their environment, Mancuso and Baluška point out that plants can be rendered unconscious by the same anesthetics that put animals out: drugs can induce in plants an unresponsive state resembling sleep. (A snoozing Venus flytrap won’t notice an insect crossing its threshold.) What’s more, when plants are injured or stressed, they produce a chemical—ethylene—that works as an anesthetic on animals. Suggesting that plants feel pain.
Can plants actually have feelings? This was the conclusion of Cleve Backster back in the 1960s. He’s the former CIA interrogation specialist that connected polygraph sensors to plants and discovered that they reacted to harm (i.e. cutting their leaves) and even to harmful thoughts of humans in proximity to them.
Backster decided on impulse to attach his polygraph electrodes to the now-famous dracaena in his office, then water the plant and see if the leaves responded. Finding that the plant indeed reacted to this event, he decided to see what would happen if he threatened it, and formed in his mind the idea of lighting a match to the leaf where the electrodes were attached.
And that was when something happened that forever changed Baxter’s life and ours. For the plant didn’t wait for him to light the match. It reacted to his thoughts!
Through further research, Baxter found that it was his intent, and not merely the thought itself, that brought about this reaction.
He also discovered that plants were aware of each other, mourned the death of anything (even the bacteria killed when boiling water is poured down the drain), strongly disliked people who killed plants carelessly or even during scientific research, and fondly remembered and extended their energy out to the people who had grown and tended them, even when their “friends” were far away in both time and space.
In fact, he found, plants can react “in the moment” to events taking place thousands of miles away. And not only are they psychic, they also are prophetic, anticipating negative and positive events, including weather.
One of the most important things that Backster discovered was that, instead of going ballistic, plants that find themselves in the presence of overwhelming danger simply become catatonic! This phenomenon has posed endless problems for those researchers who, unlike Backster, do not respect the sentience of their subjects. Under such circumstances, the plants they are studying evince no reaction whatsoever. They simply “check out.”
“Yes, plants have both short- and long-term electrical signalling, and they use some neurotransmitter-like chemicals as chemical signals,” Lincoln Taiz, an emeritus professor of plant physiology at U.C. Santa Cruz -2013
A highly developed sensory apparatus is required to locate food and identify threats. Plants have evolved between fifteen and twenty distinct senses, including analogues of our five: smell and taste (they sense and respond to chemicals in the air or on their bodies); sight (they react differently to various wavelengths of light as well as to shadow); touch (a vine or a root “knows” when it encounters a solid object); and, it has been discovered, sound. In a recent experiment, Heidi Appel, a chemical ecologist at the University of Missouri, found that, when she played a recording of a caterpillar chomping a leaf for a plant that hadn’t been touched, the sound primed the plant’s genetic machinery to produce defense chemicals. Another experiment, done in Mancuso’s lab and not yet published, found that plant roots would seek out a buried pipe through which water was flowing even if the exterior of the pipe was dry, which suggested that plants somehow “hear” the sound of flowing water.
Scientists have since found that the tips of plant roots, in addition to sensing gravity, moisture, light, pressure, and hardness, can also sense volume, nitrogen, phosphorus, salt, various toxins, microbes, and chemical signals from neighboring plants. Roots about to encounter an impenetrable obstacle or a toxic substance change course before they make contact with it. Roots can tell whether nearby roots are self or other and, if other, kin or stranger. Normally, plants compete for root space with strangers, but, when researchers put four closely related Great Lakes sea-rocket plants (Cakile edentula) in the same pot, the plants restrained their usual competitive behaviors and shared resources.
Somehow, a plant gathers and integrates all this information about its environment, and then “decides”—some scientists deploy the quotation marks, indicating metaphor at work; others drop them—in precisely what direction to deploy its roots or its leaves. Once the definition of “behavior” expands to include such things as a shift in the trajectory of a root, a reallocation of resources, or the emission of a powerful chemical, plants begin to look like much more active agents, responding to environmental cues in ways more subtle or adaptive than the word “instinct” would suggest. “Plants perceive competitors and grow away from them,” Rick Karban, a plant ecologist at U.C. Davis, explained, when I asked him for an example of plant decision-making. “They are more leery of actual vegetation than they are of inanimate objects, and they respond to potential competitors before actually being shaded by them.” These are sophisticated behaviors, but, like most plant behaviors, to an animal they’re either invisible or really, really slow.
One of the most productive areas of plant research in recent years has been plant signalling. Since the early nineteen-eighties, it has been known that when a plant’s leaves are infected or chewed by insects they emit volatile chemicals that signal other leaves to mount a defense. Sometimes this warning signal contains information about the identity of the insect, gleaned from the taste of its saliva. Depending on the plant and the attacker, the defense might involve altering the leaf’s flavor or texture, or producing toxins or other compounds that render the plant’s flesh less digestible to herbivores. When antelopes browse acacia trees, the leaves produce tannins that make them unappetizing and difficult to digest. When food is scarce and acacias are overbrowsed, it has been reported, the trees produce sufficient amounts of toxin to kill the animals.
Perhaps the cleverest instance of plant signalling involves two insect species, the first in the role of pest and the second as its exterminator. Several species, including corn and lima beans, emit a chemical distress call when attacked by caterpillars. Parasitic wasps some distance away lock in on that scent, follow it to the afflicted plant, and proceed to slowly destroy the caterpillars. Scientists call these insects “plant bodyguards.”
The most controversial presentation was “Animal-Like Learning in Mimosa Pudica,” an unpublished paper by Monica Gagliano, a thirty-seven-year-old animal ecologist at the University of Western Australia who was working in Mancuso’s lab in Florence. Gagliano, who is tall, with long brown hair parted in the middle, based her experiment on a set of protocols commonly used to test learning in animals. She focussed on an elementary type of learning called “habituation,” in which an experimental subject is taught to ignore an irrelevant stimulus. “Habituation enables an organism to focus on the important information, while filtering out the rubbish,” Gagliano explained to the audience of plant scientists. How long does it take the animal to recognize that a stimulus is “rubbish,” and then how long will it remember what it has learned? Gagliano’s experimental question was bracing: Could the same thing be done with a plant?
Mimosa pudica, also called the “sensitive plant,” is that rare plant species with a behavior so speedy and visible that animals can observe it; the Venus flytrap is another. When the fernlike leaves of the mimosa are touched, they instantly fold up, presumably to frighten insects. The mimosa also collapses its leaves when the plant is dropped or jostled. Gagliano potted fifty-six mimosa plants and rigged a system to drop them from a height of fifteen centimetres every five seconds. Each “training session” involved sixty drops. She reported that some of the mimosas started to reopen their leaves after just four, five, or six drops, as if they had concluded that the stimulus could be safely ignored. “By the end, they were completely open,” Gagliano said to the audience. “They couldn’t care less anymore.”
Was it just fatigue? Apparently not: when the plants were shaken, they again closed up. “ ‘Oh, this is something new,’ ” Gagliano said, imagining these events from the plants’ point of view. “You see, you want to be attuned to something new coming in. Then we went back to the drops, and they didn’t respond.” Gagliano reported that she retested her plants after a week and found that they continued to disregard the drop stimulus, indicating that they “remembered” what they had learned. Even after twenty-eight days, the lesson had not been forgotten. She reminded her colleagues that, in similar experiments with bees, the insects forgot what they had learned after just forty-eight hours. Gagliano concluded by suggesting that “brains and neurons are a sophisticated solution but not a necessary requirement for learning,” and that there is “some unifying mechanism across living systems that can process information and learn.”
She noted that some of her plants learned faster than others, evidence that “this is not an innate or programmed response.”
“Here, I’ll show you something,” he said. “Then you tell me if plants have intention.” He swivelled his computer monitor around and clicked open a video.
Time-lapse photography is perhaps the best tool we have to bridge the chasm between the time scale at which plants live and our own. This example was of a young bean plant, shot in the lab over two days, one frame every ten minutes. A metal pole on a dolly stands a couple of feet away. The bean plant is “looking” for something to climb. Each spring, I witness the same process in my garden, in real time. I always assumed that the bean plants simply grow this way or that, until they eventually bump into something suitable to climb. But Mancuso’s video seems to show that this bean plant “knows” exactly where the metal pole is long before it makes contact with it. Mancuso speculates that the plant could be employing a form of echolocation. There is some evidence that plants make low clicking sounds as their cells elongate; it’s possible that they can sense the reflection of those sound waves bouncing off the metal pole.
The bean plant wastes no time or energy “looking”—that is, growing—anywhere but in the direction of the pole. And it is striving (there is no other word for it) to get there: reaching, stretching, throwing itself over and over like a [url=http://www.amazon.ca/s?url=search-alias%3Daps&field-keywords=fly rod]fly rod[/url], extending itself a few more inches with every cast, as it attempts to wrap its curling tip around the pole. As soon as contact is made, the plant appears to relax; its clenched leaves begin to flutter mildly. All this may be nothing more than an illusion of time-lapse photography. Yet to watch the video is to feel, momentarily, like one of the aliens in Mancuso’s formative science-fiction story, shown a window onto a dimension of time in which these formerly inert beings come astonishingly to life, seemingly conscious individuals with intentions.
``if we define the term consiousness simply as the state of being awake and aware of one’s environment—“online,” as the neuroscientists say—then plants may qualify as conscious beings, at least according to Mancuso and Baluška. “The bean knows exactly what is in the environment around it,” Mancuso said. “We don’t know how. But this is one of the features of consciousness: You know your position in the world. ``
In support of their contention that plants are conscious of their environment, Mancuso and Baluška point out that plants can be rendered unconscious by the same anesthetics that put animals out: drugs can induce in plants an unresponsive state resembling sleep. (A snoozing Venus flytrap won’t notice an insect crossing its threshold.) What’s more, when plants are injured or stressed, they produce a chemical—ethylene—that works as an anesthetic on animals. Suggesting that plants feel pain.